Antithrombin Therapy During PCI: Bivalirudin is Better ????

Perwaiz M. Meraj MD FACC FSCAI

Director of Research, Associate Program Director
Complex Coronary, Advanced Hemodynamic Support, Structural Heart and Peripheral Vascular Disease
Northwell Health
Hofstra Northwell Health School of Medicine
Faculty Disclosure

<table>
<thead>
<tr>
<th>Company</th>
<th>Nature of Affiliation</th>
<th>Unlabeled Product Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medtronic, Edwards Lifesciences, Abiomed, Boston Scientific, Avinger</td>
<td>• Research Grants, • Advisory Board</td>
<td>• None</td>
</tr>
</tbody>
</table>
Real Disclosure ...

• Heparin is better ...
• I only use heparin ...
Pharmacotherapy Across the Spectrum of CAD/PCI

Risk (Mortality)

- Stable angina
- Unstable angina
- NSTEMI
- STEMI
Pharmacotherapy Across the Spectrum of CAD: Unfractionated heparin (all conservative care)

- Stable angina
- Unstable angina
- NSTEMI
- STEMI

Risk (Mortality)

N = 1,353 randomized patients

6 small studies
Unfractionated Heparin in ACS (N=1,353)

Summary Relative Risk
0.67 (0.44–0.1.02)

Heparin + ASA
55/698 = 7.9%

ASA Alone
68/655=10.4%

Oler et al. JAMA 1996;276:811–6
Limitations of Heparins

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UFH</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active moieties in substance</td>
<td>30–35%</td>
<td>Unpredictable</td>
</tr>
<tr>
<td>Action independent of AT</td>
<td>No</td>
<td>Unpredictable</td>
</tr>
<tr>
<td>Non-specific protease binding</td>
<td>Yes</td>
<td>Unpredictable</td>
</tr>
<tr>
<td>Variable PK-PD</td>
<td>Yes</td>
<td>Unpredictable</td>
</tr>
<tr>
<td>Inhibits fibrin-bound thrombin</td>
<td>No</td>
<td>Need ↑ dose</td>
</tr>
<tr>
<td>Activates/aggregates platelets</td>
<td>Yes</td>
<td>Need IIb/IIIa</td>
</tr>
<tr>
<td>$T_{0.5}$ in minutes</td>
<td>60–90’</td>
<td>↑ Bleeding</td>
</tr>
<tr>
<td>PF-4 complexing & risk of HIT</td>
<td>Yes</td>
<td>Very bad</td>
</tr>
</tbody>
</table>
Antithrombin Choices for PCI, ACS and AMI

Unfractionated heparin

IdoA GlcA

Trisulfated disaccharide Disulfated disaccharide Antithrombin Pentasaccharide Binding Site Trisulfated disaccharide

Fondaparinux

Bivalirudin

LMW Heparin

Chemical β elimination Oxidation Deam degradation Enzymatic β elimination

OH

O
Bivalirudin
Bivalent Synthetic Direct Thrombin Inhibitor

- Specifically inhibits
 - Fluid phase thrombin
 - Clot-bound thrombin
 - Collagen and thrombin-mediated platelet aggregation (blocks activation of PAR-1 and PAR-4 receptors)
- Reversible
- $T_{0.5}$ 25 minutes

Topol EJ: Textbook of Interventional Cardiology
Overcoming Limitations of Heparins

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UFH</th>
<th>Enox</th>
<th>Fonda</th>
<th>Bivalirudin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active moieties in substance</td>
<td>30–35%</td>
<td>40–60%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Action independent of AT</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Non-specific protease binding</td>
<td>Yes</td>
<td>Partial</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Variable PK-PD</td>
<td>Yes</td>
<td>Less</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Inhibits fibrin-bound thrombin</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Activates/aggregates platelets</td>
<td>Yes</td>
<td>+/-</td>
<td>?</td>
<td>Inhibits</td>
</tr>
<tr>
<td>$T_{0.5}$ in minutes</td>
<td>60–90’</td>
<td>270’</td>
<td>15–18°</td>
<td>25’</td>
</tr>
<tr>
<td>PF-4 complexing & risk of HIT</td>
<td>Yes</td>
<td>Reduced</td>
<td>Low</td>
<td>No</td>
</tr>
</tbody>
</table>
Bivalirudin Inhibits, Doesn’t Activate Platelets

Direct platelet activation by UFH but not bivalirudin¹

*Scanning electron micrographs were acquired at a magnification of 4,000x with the investigator blinded to treatment.

Bivalirudin inhibitors both thrombin-induced and collagen-induced platelet activation²

¹Anand SX et al. *Am J Cardiol.* 2007;100:417-424
²Kimmelstiel C et al. *Circ CV Interv.* 2011;4:
Pharmacotherapy Across the Spectrum of CAD: Bivalirudin

N = 27,593 randomized patients
Bivalirudin vs Heparin + GPIIb/IIIa Inhibitor During PCI
6,012 Patients Undergoing Urgent or Elective PCI

Randomization – double blind, triple dummy

Heparin
65 U/kg initial bolus
Planned GP IIb/IIIa
(abciximab or eptifibatide)

Target ACT ≥ 225 sec

Bivalirudin
0.75 mg/kg initial bolus,
1.75 mg/kg-hr during PCI
Provisional GP IIb/IIIa
(abciximab or eptifibatide)

abciximab: 0.25 mg/kg bolus, 0.125 µg/kg-min (max 10 µg/min) x 12 hrs

eptifibatide: 180 µg/kg double bolus, 2.0 µg/kg-min x 18-24 hrs

Primary “Quadruple Endpoint” at 30 Days

Lincoff AM et al. JAMA 2003;289:853–63
30 Day Primary Endpoint
6,012 Patients Undergoing PCI

Lincoff AM et al. JAMA 2003;289:853–63
Bleeding Complications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Bivalirudin N = 2994</th>
<th>Heparin + GP IIb/IIIa N = 3008</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major bleeding</td>
<td>2.4</td>
<td>4.1</td>
<td><0.001</td>
</tr>
<tr>
<td>Minor bleeding</td>
<td>13.4</td>
<td>25.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Large hematoma</td>
<td>0.8</td>
<td>2.5</td>
<td><0.001</td>
</tr>
<tr>
<td>Retroperitoneal hemorrhage</td>
<td>0.2</td>
<td>0.5</td>
<td>0.06</td>
</tr>
<tr>
<td>Major organ bleeding</td>
<td>0.5</td>
<td>1.5</td>
<td><0.001</td>
</tr>
<tr>
<td>Intracranial hemorrhage</td>
<td>0</td>
<td>0.1</td>
<td>1.00</td>
</tr>
<tr>
<td>Thrombocytopenia (<100K)</td>
<td>0.7</td>
<td>1.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Transfusion</td>
<td>1.7</td>
<td>2.5</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Lincoff AM et al. JAMA 2003;289:853–63
1-year Mortality
All 6,012 Patients (ITT)

Cumulative Deaths

Days

Heparin+GPIIb/IIIa N=3008
Bivalirudin N=2994

P value = 0.16

2.5%
1.9%

Lincoff AM et al. JAMA 2004;292:696–703
ISAR-REACT 3: 4570 troponin negative pts were loaded with clopidogrel 600 mg and randomized to UFH (140 U/kg) vs. bivalirudin.

Primary endpoints = MACE, major bleeding (R2 scale), and MACE or major bleeding

<table>
<thead>
<tr>
<th>30 Day Outcomes</th>
<th>Bivalirudin</th>
<th>UFH</th>
<th>RR [95%CI]</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death, MI, or urgent TVR</td>
<td>5.9%</td>
<td>5.0%</td>
<td>1.16 [0.91,1.49]</td>
<td>0.23</td>
</tr>
<tr>
<td>- Death</td>
<td>0.1%</td>
<td>0.2%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- MI</td>
<td>5.6%</td>
<td>4.8%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- Urgent TVR</td>
<td>0.8%</td>
<td>0.7%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Major bleed (R2 defn.)</td>
<td>3.1%</td>
<td>4.6%</td>
<td>0.66 [0.49,0.90]</td>
<td>0.008</td>
</tr>
<tr>
<td>TIMI major or minor bleed</td>
<td>1.8%</td>
<td>3.3%</td>
<td>0.57 [0.32,0.78]</td>
<td>0.001</td>
</tr>
<tr>
<td>- major bleed</td>
<td>0.5%</td>
<td>1.1%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- minor bleed</td>
<td>1.3%</td>
<td>2.2%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D, MI, uTVR, or major bleed</td>
<td>8.3%</td>
<td>8.7%</td>
<td>0.94 [0.77,1.15]</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Katrati A et al. NEJM 2008;359:688-96
ACUITY: First Randomization

Moderate and high risk unstable angina or NSTEMI undergoing an invasive strategy (N = 13,819)

- Moderate and high risk ACS (n=13,819)
 - Aspirin in all
 - Clopidogrel
dosing and timing
 per local practice

- UFH/Enox + GP IIb/IIIa (n=4,603)
- Bivalirudin + GP IIb/IIIa (n=4,604)
- Bivalirudin Alone (n=4,612)

Angiography 19.6° median

- Medical management
 - PCI 56%
 - CABG 11%

*Stratified by pre-angiography thienopyridine use or administration

Stone GW et al. NEJM 2006;355:2203-16
Ischemic Composite Endpoint

Cumulative Events (%)

Days from Randomization

UFH/Enoxaparin + IIb/IIIa (N=4603)
Estimate 7.4% (log rank)

Bivalirudin + IIb/IIIa (N=4604)
7.9% 0.37

Bivalirudin alone (N=4612)
8.0% 0.30

Stone GW et al. NEJM 2006;355:2203-16
Major Bleeding Endpoint

- UFH/Enoxaparin + IIb/IIIa (N=4603) Estimate 5.7% (log rank) P <0.0001
- Bivalirudin + IIb/IIIa (N=4604) Estimate 5.3% P 0.41
- Bivalirudin alone (N=4612) Estimate 3.1% P <0.0001

Stone GW et al. NEJM 2006;355:2203-16
Bleeding Endpoints

<table>
<thead>
<tr>
<th></th>
<th>UFH/Enoxaparin + GP IIb/IIIa (N=4,603)</th>
<th>Bivalirudin + GP IIb/IIIa (N=4,604)</th>
<th>Bivalirudin alone (N=4,612)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACUITY Scale</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Major Bleed, all</td>
<td>11.8%</td>
<td>11.1%</td>
<td>9.1%</td>
<td><0.001</td>
</tr>
<tr>
<td>- Major, non-CABG</td>
<td>5.7%</td>
<td>5.3%</td>
<td>3.0%</td>
<td><0.001</td>
</tr>
<tr>
<td>- Minor, non-CABG</td>
<td>21.6%</td>
<td>21.7%</td>
<td>12.8%</td>
<td><0.001</td>
</tr>
<tr>
<td>TIMI Scale</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Any</td>
<td>6.6%</td>
<td>6.5%</td>
<td>4.0%</td>
<td><0.001</td>
</tr>
<tr>
<td>- Major</td>
<td>1.9%</td>
<td>1.7%</td>
<td>0.9%</td>
<td><0.001</td>
</tr>
<tr>
<td>- Minor</td>
<td>6.4%</td>
<td>6.1%</td>
<td>3.7%</td>
<td><0.001</td>
</tr>
<tr>
<td>Blood transfusion</td>
<td>2.7%</td>
<td>2.6%</td>
<td>1.6%</td>
<td><0.001</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>11.1%</td>
<td>10.8%</td>
<td>9.9%</td>
<td>0.01*</td>
</tr>
</tbody>
</table>

*P value for Bivalirudin alone vs. GP IIb/IIIa inhibitor based regimen
ISAR-REACT-4

1,721 Pts with NSTEMI (CK-MB or troponin+) undergoing PCI
Pre-treated with aspirin and 600 mg of clopidogrel

Double-blind (double-dummy drug)

UFH + Abciximab
- Bolus UFH 70 U/kg
- Bolus Abcx 0.25 mg/kg + infusion 0.125 μg/kg/min x12h
N=861

Bivalirudin
- Bolus 0.75 mg/kg + infusion 1.75 mg/kg/hr for duration of PCI
N=860

Primary endpoint = death, large MI, urgent TVR, or major bleeding at 30d
Powered for superiority of UFH/Abcix over bivalirudin
ISAR-REACT-4: Composite ischemia

Days

Death, MI, or urgent TVR (%)

- UFH + Abciximab (n=861)
- Bivalirudin (n=860)

RR (95%CI) = 1.04 (0.80–1.35)

P=0.76

ISAR-REACT-4: Major bleeding

RR (95%CI) = 0.54 (0.33 – 0.91)

P=0.02

*Intracranial, intraocular, or RP hemorrhage; Δhgb >4 g/dL with overt bleeding or ≥2U RBC Rx

Days

Major bleeding* (%)

0 5 10 15 20 25 30

UFH + Abciximab (n=861)

Bivalirudin (n=860)

4.6%

2.6%
Harmonizing Outcomes with Revascularization and Stents in AMI

3602 pts with STEMI with symptom onset ≤12 hours

Aspirin, thienopyridine

R 1:1

UFH + GP IIb/IIIa inhibitor (abciximab or eptifibatide)

Bivalirudin monotherapy (± provisional GP IIb/IIIa)

Emergent angiography, followed by triage to...

CABG – Primary PCI – Medical Rx

3006 pts eligible for stent randomization

R 3:1

Paclitaxel-eluting TAXUS stent

Bare metal EXPRESS stent

Clinical FU at 30d, 6 mo, 1 yr, and then yearly through 3 yrs; angio FU at 13 mo

Stone GW et al
HORIZONS: 30 Day Adverse Events

- Reinfarction: 1.8%
- Major bleeding*: 4.9%
- Thrombocytopenia**: 1.8%

*Not related to CABG
** Plat cnt <100,000 cells/mm³

P = 0.90
P < 0.001
P = 0.002

Stone GW et al. NEJM 2008;358:2218-30
Three-Year All-Cause Mortality

- **Bivalirudin alone (n=1800)**
- **Heparin + GPIIb/IIIa (n=1802)**

30-day HR [95%CI] = 0.66 [0.44, 1.00]
P = 0.048

3-yr HR [95%CI] = 0.75 [0.58, 0.97]
P = 0.03

Number at risk:
- Bivalirudin alone: 1800
- Heparin + GPIIb/IIIa: 1802

Months:
- 0 3 6 9 12 15 18 21 24 27 30 33 36
- All-Cause Mortality (%)

0 1 2 3 4 5 6 7 8 9 10

Stone GW et al. NEJM 2008;358:2218-30
3-Year Mortality: Cardiac and Non Cardiac

Cardiac Mortality (%): 5.1% (3-yr HR [95%CI]= 0.56 [0.40, 0.80] P=0.001)
Non-Cardiac Mortality (%): 2.9% (3-yr HR [95%CI]= 1.11 [0.74, 1.65] P=0.62)

Number at risk:
- Bivalirudin alone (n=1800)
 - Bival: 1800
 - H + GPI: 1611
- Heparin + GPIIb/IIIa (n=1802)
 - Bival: 1802
 - H + GPI: 1689

Bivalirudin vs. Heparin + GPI (n=18,819)

Mortality at 1-year by treatment and study

<table>
<thead>
<tr>
<th>Study</th>
<th>Bivalirudin (n=9406)</th>
<th>H+GPI (n=9413)</th>
<th>Adjusted HR [95%CI]</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPLACE-2</td>
<td>1.9% (56/2994)</td>
<td>2.4% (72/3008)</td>
<td>0.78 (0.55 to 1.10)</td>
<td>0.16</td>
</tr>
<tr>
<td>ACUITY</td>
<td>3.7% (170/4612)</td>
<td>3.9% (178/4603)</td>
<td>0.96 (0.77 to 1.18)</td>
<td>0.67</td>
</tr>
<tr>
<td>HORIZONS-AMI</td>
<td>3.4% (61/1800)</td>
<td>4.8% (86/1802)</td>
<td>0.71 (0.51 to 0.98)</td>
<td>0.038</td>
</tr>
<tr>
<td>Pooled</td>
<td>3.1% (287/9406)</td>
<td>3.6% (336/9413)</td>
<td>0.84 (0.72 to 0.99)</td>
<td>0.035</td>
</tr>
</tbody>
</table>

Lincoff AM et al. JAMA 2004;292:696-703
Stone GW et al. JAMA 2007;298:2497-506
Bivalirudin vs. Heparin + GPIIb/IIIa

N = 127,185 pts undergoing PCI 2003-2006
(Premier Perspective Database, ~1/6th of all US hosps; bival in 26%)

In-hospital transfusion

<table>
<thead>
<tr>
<th>Study</th>
<th>Bivalirudin</th>
<th>H+GPI</th>
<th>Adjusted HR [95%CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPLACE-2**</td>
<td>3.0%</td>
<td>4.6%</td>
<td>0.67 [0.61 - 0.73]</td>
</tr>
<tr>
<td>ACUITY**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HORIZONS-AMI**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISAR-REACT**</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

33% ↓ Transfusion

Favors Bival
Favors H+GPI

Rassen JA et al. EHJ 2010;31:561-72
Bivalirudin vs. Heparin + GPIIb/IIIa

N = 127,185 pts undergoing PCI 2003-2006
(Premier Perspective Database, ~1/6th of all US hosps; bival in 26%)

In-hospital death

Unadjusted (All) Adjusted (All) Adjusted (urgent subgroup) Adjusted (elective subgroup) REPLACE-2** ACUITY** HORIZONS-AMI** ISAR-REACT*

Favors Bival Favors H+GPI

Bivalirudin H+GPI

0.8% 2.1%

Adjusted HR [95%CI]
0.51 [0.44 – 0.60]

49% ↓ Death

**30 days

Rassen JA et al. EHJ 2010;31:561-72
Bivalirudin vs. Heparin + GPIIb/IIIa

Primary PCI in 59,917 STEMI pts 2004-2008

(Premier Perspective Database, ~1/6th of all US hosps)

3:1 propensity adjusted matching

<table>
<thead>
<tr>
<th>In-hospital outcomes</th>
<th>Bivalirudin (N=5,329)</th>
<th>UFH + GPI (N=15,987)</th>
<th>OR (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleeding</td>
<td>6.9%</td>
<td>10.5%</td>
<td>0.52 (0.41, 0.66)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Transfusion</td>
<td>5.9%</td>
<td>7.6%</td>
<td>0.75 (0.66–0.86)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Bleeding + transf</td>
<td>1.6%</td>
<td>3.0%</td>
<td>0.63 (0.56–0.71)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Death</td>
<td>3.2%</td>
<td>4.0%</td>
<td>0.80 (0.67–0.95)</td>
<td>0.01</td>
</tr>
<tr>
<td>Length of stay (days)</td>
<td>4.3 ± 4.5</td>
<td>4.5 ± 4.4</td>
<td>-</td>
<td><0.0001</td>
</tr>
<tr>
<td>Total cost (median)</td>
<td>$14,462</td>
<td>$15,772</td>
<td>-</td>
<td><0.0001</td>
</tr>
</tbody>
</table>
Anticoagulation Regimens During PCI

N = 458,448 PCI pts 2004-2008 at 299 hosps
(Premier Perspective Database, ~1/5th of all US hosp discharges; bival in 41%)

In-hospital events, propensity adjusted

Bleeding + Transfusion

<table>
<thead>
<tr>
<th>Comparator</th>
<th>OR (95% CI)</th>
<th>P Value</th>
<th>Comparator</th>
<th>OR (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bivalirudin monotherapy</td>
<td>0.51 (0.48, 0.55)</td>
<td><0.0001</td>
<td>Bivalirudin + GPI</td>
<td>0.59 (0.54, 0.65)</td>
<td><0.0001</td>
</tr>
<tr>
<td>(n=156,064)</td>
<td></td>
<td></td>
<td>(n=182,948)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bivalirudin + GPI</td>
<td>0.96 (0.87, 1.06)</td>
<td>0.37</td>
<td>Bivalirudin + GPI</td>
<td>0.82 (0.72, 0.94)</td>
<td>0.004</td>
</tr>
<tr>
<td>(n=33,566)</td>
<td></td>
<td></td>
<td>(n=33,566)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heparin alone</td>
<td>0.71 (0.66, 0.76)</td>
<td><0.0001</td>
<td>Heparin alone</td>
<td>0.88 (0.82, 0.96)</td>
<td>0.003</td>
</tr>
<tr>
<td>(n=85,870)</td>
<td></td>
<td></td>
<td>(n=85,870)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mortality

<table>
<thead>
<tr>
<th>Comparator</th>
<th>OR (95% CI)</th>
<th>P Value</th>
<th>Comparator</th>
<th>OR (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bivalirudin monotherapy</td>
<td>0.88 (0.82, 0.96)</td>
<td>0.003</td>
<td>Bivalirudin monotherapy</td>
<td>0.88 (0.82, 0.96)</td>
<td>0.003</td>
</tr>
<tr>
<td>(n=156,064)</td>
<td></td>
<td></td>
<td>(n=156,064)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bivalirudin + GPI</td>
<td>0.82 (0.72, 0.94)</td>
<td>0.004</td>
<td>Bivalirudin + GPI</td>
<td>0.82 (0.72, 0.94)</td>
<td>0.004</td>
</tr>
<tr>
<td>(n=33,566)</td>
<td></td>
<td></td>
<td>(n=33,566)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heparin alone</td>
<td>0.88 (0.82, 0.96)</td>
<td>0.003</td>
<td>Heparin alone</td>
<td>0.88 (0.82, 0.96)</td>
<td>0.003</td>
</tr>
<tr>
<td>(n=85,870)</td>
<td></td>
<td></td>
<td>(n=85,870)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bivalirudin vs UFH Monotherapy Meta-analysis

16 studies (3 rand, 13 reg), 32,492 pts undergoing PCI:

Major Bleeding

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Bivalirudin</th>
<th>Heparin</th>
<th>Odds Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observational</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wolfram 2003</td>
<td>4</td>
<td>335</td>
<td>35</td>
</tr>
<tr>
<td>Rha 2005</td>
<td>1</td>
<td>54</td>
<td>2</td>
</tr>
<tr>
<td>Chu 2006</td>
<td>2</td>
<td>216</td>
<td>14</td>
</tr>
<tr>
<td>Bonello 2009</td>
<td>23</td>
<td>566</td>
<td>14</td>
</tr>
<tr>
<td>Lemesle 2009</td>
<td>10</td>
<td>79</td>
<td>20</td>
</tr>
<tr>
<td>Lemesle 2009-b</td>
<td>26</td>
<td>1207</td>
<td>101</td>
</tr>
<tr>
<td>Delhaye 2010</td>
<td>5</td>
<td>267</td>
<td>2</td>
</tr>
<tr>
<td>Lindsey 2010</td>
<td>6</td>
<td>503</td>
<td>26</td>
</tr>
<tr>
<td>Lopes 2010</td>
<td>101</td>
<td>1771</td>
<td>89</td>
</tr>
<tr>
<td>Schultz 2010</td>
<td>12</td>
<td>2289</td>
<td>16</td>
</tr>
<tr>
<td>Bangalore 2011</td>
<td>38</td>
<td>1511</td>
<td>78</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>8798</td>
<td>10414</td>
<td></td>
</tr>
<tr>
<td>Total Events</td>
<td>228</td>
<td>397</td>
<td></td>
</tr>
</tbody>
</table>

Test for heterogeneity: $\text{Tau}^2=0.11$, $\text{Chi}^2=20.84$, df=10 ($P=0.02$), $I^2=52\%$
Test for overall effect: $Z=3.55$ ($P=0.0004$)

<table>
<thead>
<tr>
<th>Randomized</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kastrati 2008</td>
<td>12</td>
<td>2289</td>
<td>24</td>
</tr>
<tr>
<td>Parodi 2010</td>
<td>3</td>
<td>363</td>
<td>8</td>
</tr>
<tr>
<td>Patti 2011</td>
<td>1</td>
<td>198</td>
<td>2</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>2850</td>
<td>2792</td>
<td></td>
</tr>
<tr>
<td>Total Events</td>
<td>16</td>
<td>34</td>
<td></td>
</tr>
</tbody>
</table>

Test for heterogeneity: $\text{Tau}^2=0.00$, $\text{Chi}^2=0.37$, df=2 ($P=0.83$), $I^2=0\%$
Test for overall effect: $Z=2.60$ ($P=0.009$)

Total (95% CI) | 11648 | 13206 | 0.55 [0.43, 0.72] |
Total Events | 244 | 431 | 45% ↓ |

Test for heterogeneity: $\text{Tau}^2=0.08$, $\text{Chi}^2=21.99$, df=13 ($P=0.06$), $I^2=41\%$
Test for overall effect: $Z=4.38$ ($P<0.0001$)
Test for subgroup differences: $\text{Chi}^2=0.47$, df=1 ($P=0.49$), $I^2=0\%$

Bivalirudin vs UFH Monotherapy Meta-analysis

16 studies (3 rand, 13 reg), 32,492 pts undergoing PCI:

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Bivalirudin Events</th>
<th>Heparin Events</th>
<th>Odds Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observational</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wolfram 2003</td>
<td>0</td>
<td>1</td>
<td>1.53 [0.06, 37.70]</td>
</tr>
<tr>
<td>Gurm 2005</td>
<td>3</td>
<td>4</td>
<td>0.69 [0.15, 3.11]</td>
</tr>
<tr>
<td>Rha 2005</td>
<td>0</td>
<td>0</td>
<td>Not estimable</td>
</tr>
<tr>
<td>Chu 2006</td>
<td>7</td>
<td>9</td>
<td>1.66 [0.61, 4.53]</td>
</tr>
<tr>
<td>Gurm 2007</td>
<td>3</td>
<td>7</td>
<td>0.82 [0.21, 3.17]</td>
</tr>
<tr>
<td>Bonello 2009</td>
<td>6</td>
<td>3</td>
<td>1.18 [0.29, 4.74]</td>
</tr>
<tr>
<td>Lemesle 2009</td>
<td>3</td>
<td>4</td>
<td>0.87 [0.19, 4.00]</td>
</tr>
<tr>
<td>Lemesle 2009-b</td>
<td>48</td>
<td>124</td>
<td>0.48 [0.34, 0.67]</td>
</tr>
<tr>
<td>Delhaye 2010</td>
<td>5</td>
<td>1</td>
<td>2.44 [0.28, 21.13]</td>
</tr>
<tr>
<td>Lindsey 2010</td>
<td>0</td>
<td>4</td>
<td>0.19 [0.01, 3.52]</td>
</tr>
<tr>
<td>Lopes 2010</td>
<td>12</td>
<td>18</td>
<td>0.51 [0.25, 1.06]</td>
</tr>
<tr>
<td>Schultz 2010</td>
<td>3</td>
<td>5</td>
<td>0.66 [0.16, 2.75]</td>
</tr>
<tr>
<td>Bangalore 2011</td>
<td>1</td>
<td>8</td>
<td>0.12 [0.02, 1.00]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>11713</td>
<td>15137</td>
<td>0.62 [0.45, 0.85]</td>
</tr>
<tr>
<td>Total Events</td>
<td>91</td>
<td>188</td>
<td></td>
</tr>
</tbody>
</table>

Test for heterogeneity: $\tau^2=0.03$, Chi$^2=11.92$, df=11 ($P=0.37$), $I^2=8\%$

Test for overall effect: $Z=2.98$ ($P=0.003$)

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Bivalirudin Events</th>
<th>Heparin Events</th>
<th>Odds Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomized</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kastrati 2008</td>
<td>3</td>
<td>4</td>
<td>0.75 [0.17, 3.34]</td>
</tr>
<tr>
<td>Parodi 2010</td>
<td>1</td>
<td>4</td>
<td>0.21 [0.02, 1.89]</td>
</tr>
<tr>
<td>Patti 2011</td>
<td>1</td>
<td>0</td>
<td>3.09 [0.13, 76.33]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>2850</td>
<td>2792</td>
<td>0.63 [0.20, 2.01]</td>
</tr>
<tr>
<td>Total Events</td>
<td>5</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Test for heterogeneity: $\tau^2=0.00$, Chi$^2=1.96$, df=2 ($P=0.38$), $I^2=0\%$

Test for overall effect: $Z=0.78$ ($P=0.44$)

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Bivalirudin Events</th>
<th>Heparin Events</th>
<th>Odds Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total (95% CI)</td>
<td>14563</td>
<td>17929</td>
<td>0.58 [0.45, 0.75]</td>
</tr>
<tr>
<td>Total Events</td>
<td>96</td>
<td>196</td>
<td></td>
</tr>
</tbody>
</table>

Test for heterogeneity: $\tau^2=0.00$, Chi$^2=13.90$, df=14 ($P=0.46$), $I^2=0\%$

Test for overall effect: $Z=4.15$ ($P<0.0001$)

Test for subgroup differences: Chi$^2=0.00$, df=1 ($P=0.97$), $I^2=0\%$

Mortality

Health

Impact of Bleeding Avoidance Strategies

NCDR CathPCI Registry 2004-2008: **PCI in 1,522,935 pts**

Manual compression alone, closure devices, bivalirudin, or both were used in 35%, 24%, 23%, and 18% of pts, respectively.

Propensity-adjusted bleeding

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Major bleeding (%)</th>
<th>Adjusted Odds Ratio (95% CI)</th>
<th>Number of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual compression</td>
<td>2.7</td>
<td>0.77 (0.73 – 0.80)</td>
<td>508,455</td>
</tr>
<tr>
<td>Vascular closure devices</td>
<td>2.5</td>
<td>0.67 (0.63 – 0.70)</td>
<td>205,606</td>
</tr>
<tr>
<td>Bivalirudin</td>
<td>1.9</td>
<td>0.38 (0.35 – 0.42)</td>
<td>130,378</td>
</tr>
<tr>
<td>Bivalirudin + VCD</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Marso SP et al. JAMA. 2010;303:2156-64
Impact of Access and Non-Access Site Bleeding after PCI

17,393 pts underwent PCI in REPLACE-2, ACUITY and HORIZONS
925 pts (5.3%) had TIMI major or minor bleeding within 30 days

568 (61.4%) non access site related

357 (38.6%) Access site only
145 (15.7%) Indeterminate
142 (15.4%) Non access site
281 (30.4%) Access + non access site

Source of bleeding (absolute rate)

Indeterminate – most likely intraprocedural (catheter exchanges) or baseline anemia with lower transfusion threshold

Verheugt FWA et al. JACC Int 2011;4;191-197
Impact of Access and Non-Access Site Bleeding after PCI

17,393 pts underwent PCI in REPLACE-2, ACUITY and HORIZONS
925 pts (5.3%) had TIMI major or minor bleeding within 30 days

Time-updated multivariable risk of death within 1-year

<table>
<thead>
<tr>
<th>TIMI Bleed</th>
<th>HR [95%CI]</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMI Bleed - All</td>
<td>3.17 [2.51, 4.00]</td>
<td><0.0001</td>
</tr>
<tr>
<td>TIMI Bleed – Non Access Site</td>
<td>3.94 [3.07, 5.15]</td>
<td><0.0001</td>
</tr>
<tr>
<td>TIMI Bleed – Access Site Only</td>
<td>1.82 [1.17, 2.83]</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Adjusted risk of 1-year mortality

Verheugt FWA et al. JACC Int 2011;4;191-197
Impact of Access and Non-Access Site Bleeding after PCI

17,393 pts underwent PCI in REPLACE-2, ACUITY and HORIZONS
925 pts (5.3%) with 30-day TIMI major or minor bleeding

Impact of bivalirudin on bleeding according to site

<table>
<thead>
<tr>
<th>Site</th>
<th>Relative Risk</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access site</td>
<td>0.45</td>
<td><0.0001</td>
</tr>
<tr>
<td>Non Access Site</td>
<td>0.62</td>
<td><0.0001</td>
</tr>
<tr>
<td>- Non Access + Access Site</td>
<td>0.31</td>
<td><0.0001</td>
</tr>
<tr>
<td>- Non Access Site Only</td>
<td>0.70</td>
<td>0.08</td>
</tr>
<tr>
<td>- Indeterminate</td>
<td>0.75</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Bivalirudin better

NNT for bivalirudin to prevent 1 non-access site-related TIMI bleed = 71
NNT for bivalirudin to prevent 1 access site-related TIMI bleed = 74
Impact of Access and Non-Access Site Bleeding after PCI

17,393 pts underwent PCI in REPLACE-2, ACUITY and HORIZONS
925 pts (5.3%) with 30-day TIMI major or minor bleeding

Impact of bivalirudin on non-access site bleeding

<table>
<thead>
<tr>
<th>Region</th>
<th>Hep + GPI (%)</th>
<th>Bivalirudin (%)</th>
<th>Relative Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intracranial</td>
<td>0.04</td>
<td>0.03</td>
<td>0.66</td>
</tr>
<tr>
<td>GI</td>
<td>0.6</td>
<td>0.28</td>
<td>0.44</td>
</tr>
<tr>
<td>GU</td>
<td>0.64</td>
<td>0.28</td>
<td>0.44</td>
</tr>
<tr>
<td>HEENT</td>
<td>0.33</td>
<td>0.22</td>
<td>0.66</td>
</tr>
<tr>
<td>Pulmonary</td>
<td>0.18</td>
<td>0.05</td>
<td>0.31</td>
</tr>
<tr>
<td>Other</td>
<td>0.30</td>
<td>0.15</td>
<td>0.49</td>
</tr>
<tr>
<td>Indeterminate</td>
<td>1.87</td>
<td>1.40</td>
<td>0.75</td>
</tr>
<tr>
<td>All Non - Access Site</td>
<td>3.66</td>
<td>2.27</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Bivalirudin better
H + GPI better
HORIZONS-AMI: 3-year Cardiac Mortality in Pts with vs without Major Bleeding

- **Major bleeding**: P<0.0001
- **No major bleeding**: P=0.04

<table>
<thead>
<tr>
<th></th>
<th>Major bleeding</th>
<th>No major bleeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>All pts</td>
<td>11.1</td>
<td>3.2</td>
</tr>
<tr>
<td>Heparin + GPI</td>
<td>14.6</td>
<td>3.8</td>
</tr>
<tr>
<td>Bivalirudin</td>
<td>5.8</td>
<td>2.6</td>
</tr>
</tbody>
</table>

- % of cardiac deaths among pts who bled:
 - All pts: 24.6% (34/138)
 - Heparin + GPI: 30.7% (27/88)
 - Bivalirudin: 14.0% (7/50)
 - P=0.03
HORIZONS-AMI: 3-Year Cardiac Mortality in pts with and without Major Bleeding According to Treatment

- **Heparin + GPI (n=1802)**
 - 3-Year Cardiac Mortality: 14.6%
 - HR [95%CI] = 2.56 [1.12, 5.88]
 - P = 0.02

- **Bivalirudin (n=1800)**
 - 3-Year Cardiac Mortality: 5.8%
 - HR [95%CI] = 1.47 [1.00, 2.17]
 - P = 0.048

Major bleeding
- Δ = ↓20 deaths

No major bleeding
- Δ = ↓18 deaths

fewer cardiac deaths with bivalirudin

\[\text{P}_{\text{int}} = 0.34 \]
HORIZONS-AMI: Multivariable Model for 3-Year Cardiac Mortality, Including Adverse Events

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Hazard ratio (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (per 5 years)</td>
<td>1.34 (1.23 to 1.46)</td>
<td><0.001</td>
</tr>
<tr>
<td>WBC (per 10^9 cells/L)</td>
<td>1.15 (1.09 to 1.21)</td>
<td><0.001</td>
</tr>
<tr>
<td>S. creatinine (per 0.1 mg/dl)</td>
<td>1.10 (1.05 to 1.16)</td>
<td><0.001</td>
</tr>
<tr>
<td>Killip class 2-4</td>
<td>2.17 (1.41 to 3.35)</td>
<td><0.001</td>
</tr>
<tr>
<td>LAD PCI</td>
<td>1.68 (1.13 to 2.50)</td>
<td>0.007</td>
</tr>
<tr>
<td>Diabetes, medically treated</td>
<td>1.50 (1.01 to 2.23)</td>
<td>0.045</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>2.97 (1.88 to 4.69)</td>
<td><0.001</td>
</tr>
<tr>
<td>Acquired thrombocytopenia</td>
<td>2.10 (1.36 to 3.24)</td>
<td>0.001</td>
</tr>
<tr>
<td>Bivalirudin (vs UFH+GPI)</td>
<td>0.54 (0.38 to 0.79)</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Excludes 145 pts with thrombocytopenia at baseline. Other variables in model: current smoker, female gender, prior MI, # vessels treated, hemoglobin.
Procedural anticoagulant use during PCI
CathPCI Registry (~85% cath labs in the US)

941,248 PCIs between Jan 2010 and June 2011

Conclusions: Antithrombin options to support PCI in pts with SIHD and ACS

1. UFH and LMWH have substantial limitations as regards their indirect mechanism of action and non-linear PK/PD (unpredictable), lack of a point-of-care monitoring assay (LMWH), platelet activation (requiring GPIIb/IIIa), and immunogenicity (HITTS)

2. Whether LMWH has meaningful clinical advantages over UFH is uncertain

3. Fondaparinux may have advantages over UFH/LMWH for chronic use, but cannot be used as a stand-alone procedural anticoagulant (catheter thrombosis)
Conclusions: Antithrombin options to support PCI in pts with SIHD and ACS

4. Compared to UFH + GPI, bivalirudin reduces mortality across the spectrum of pts undergoing PCI

5. The mortality benefit of bivalirudin can be attributed to a complex interplay of reduced rates of major bleeding (especially non-access site related), thrombocytopenia, and other mechanisms that have not yet been elucidated

6. These benefits are realized in all PCI pts - including those undergoing radial intervention

7. By reducing major bleeding, bivalirudin is cost-saving
Thanks

Perwaiz Meraj MD FACC FSCAI
Northwell Health
PMeraj@northwell.edu